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Abstract. We analyse the influence of adsorbed ions and the resulting surface electric field and its gradient
on the anchoring properties of nematics with ionic conductivity. We take into account two physical mech-
anisms for the coupling of the nematic director with the surface electric field: (i) the dielectric anisotropy
and (ii) the coupling of the quadrupolar component of the flexoelectric coefficient with the field gradient.
It is shown that for sufficiently large fields near saturated coverage of the adsorbed ions, there can be a
spontaneous curvature distortion in the cell even when the anchoring energy is infinitely strong. We also
discuss the director distortion when the anchoring energy of the surface is finite.

PACS. 61.30.-v Liquid crystals – 61.30.Gd Orientational order of liquid crystals; electric and magnetic
field effects on order – 61.30.Cz Theory and models of liquid crystal structure

1 Introduction

As in any other sample of condensed matter, the surface
and interfacial properties of nematic liquid crystals (NLC)
are rather complex. In many physical studies as well as
practical devices like displays, it is necessary to anchor
the orientation of the nematic director at appropriate sur-
faces in specific directions. Several techniques have been
invented for this purpose [1,2]. In practice the anchor-
ing has to be characterized by an angle dependent energy
density and the simplest form proposed by Rapini and Pa-
poular [3] consistent with the symmetry of the NLC has
the following form:

Fs = −
1

2
w(n · n0)2, (1)

where n0 is the ‘easy’ axis along which n would align on
the surface in the absence of all other external fields, and
w is the anchoring energy.

Both w and n0 are assumed to arise from microscopic
interactions between the anisotropic molecules of the liq-
uid crystal and those forming the surface [4,5]. Any such
surface however breaks the macroscopic symmetry of the
nematic leading to the complexities referred to earlier,
and discussed extensively in the literature [6]. Over the
last few years another aspect of the problem, owing its
origin to the “liquid” nature of the medium has been rec-
ognized; viz., that it is a weak electrolyte [7]. In display
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devices the power consumption has to be reduced to the
absolute minimum, and special care is taken to purify the
sample. On the other hand, the effect of finite conductiv-
ity has very interesting consequences, for example leading
to a ‘nonlocal’ character of the anchoring energy itself.
Indeed there have been experimental studies [8,9] which
have clearly demonstrated the necessity to take into ac-
count the influence of adsorbed charges on the surfaces
in understanding the anchoring properties as functions of
thickness and conductivity. In the first theoretical models
the attention was confined to the coupling of the surface
electric field produced by the adsorbed charges with the
dielectric anisotropy of the medium.

All liquid crystals have flexoelectric properties, and in
particular the nonzero quadrupole density arising out of
the orientational order in the medium [10] couples with
electric field gradients which can be quite large near the
surfaces. In the present paper we will discuss the gen-
eral electrostatic problem near surfaces which incorpo-
rates both the dielectric and flexoelectric properties of the
medium. The previous treatments of the problem [11–15]
were based on the naive assumption that the dielectric and
the flexoelectric torques are reduced to only surface con-
tributions, ignoring the elastic torque completely. These
were balanced by the torque due to the anchoring energy
at the surface. In turn the problem was simply treated
as a renormalization in the effective anchoring energy.
This approach implies that in the case of strong anchoring
there cannot be an instability due to the surface electric
field. In this paper we present a more general analysis
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of this problem and show that even in the case of w →∞,
a curvature instability can indeed occur above a threshold
double layer potential. If w is finite, the threshold poten-
tial naturally gets reduced.

2 Theoretical model

We consider the specific case of an NLC confined between
two glass plates treated for homeotropic alignment, i.e.,
the easy axis n0 is along z, the normal to the surface. θ(z)
is the polar angle made by the director with respect to the
z-axis. The problem is considered to be one-dimensional,
i.e., we assume that the surface has uniform properties in
the xy-plane. As we mentioned in Section 1, the medium is
assumed to contain ionic impurities, and the surface selec-
tively adsorbs one type of ions (usually positively charged)
with an adsorption energy E . As is well known in the elec-
trolyte theory, such an adsorption produces a counterion
cloud over a depth Ld, called the Debye screening length
[16–18]. In turn, there is an electric field which is very
strong near the surface (= E) and decays as we move
away from it. As such, there is a fairly strong field gra-
dient near the surface. In usual liquid crystals, Ld � d,
where d is the thickness of the sample. Hence, it is suffi-
cient to treat the case of a semi-infinite sample bounded
at z = 0. The free energy density of the bulk NLC has the
following contributions:

(i) the elastic part which is given by

f el =
1

2
K11(∇ · n)2 +

1

2
K33(n×∇× n)2; (2)

(ii) dielectric coupling with the electric field given by

fdiel = −
εa

8π
(n ·E)2, (3)

where we have used the cgs system of units, and
(iii) the flexoelectric coupling with the field given by

fflexo = −Pfl ·E = −[e1n(∇ · n) + e3(∇× n× n)] ·E.
(4)

For the sake of simplicity we use the one elastic constant
approximation K11 = K33 = K, and in any case near an
instability threshold in the homeotropic geometry, only
K33 is relevant. Using the polar angle θ the total free en-
ergy density which is the sum of the above three terms
takes the form

f=
1

2
Kθ

′2(z)−
εa

8π
E2(z) cos2 θ(z)−

e

2
sin[2θ(z)]θ′(z)E(z),

(5)

where θ′ = dθ/dz and e = (e1 + e3) is the sum of the two
flexoelectric coefficients defined in equation (4).

The surface energy which is generally assumed to be
of the Rapini-Papoular form given by equation (1) can
have another contribution if the molecules are polar and

the anchoring is homeotropic [19]. It is now experimentally
established that there is a surface polarization Ps in such a
case [20–22]. The angle dependent part of the total surface
energy density now becomes [23,24]

fs = −
1

2
w(n · k)2 −PPPs ·Es = −

1

2
w cos2 θ0 −PsE0 cos θ0,

(6)

where θ0 and E0 are the values of the polar tilt angle and
the electric field at the surface (z = 0). Equation (6) was
used to describe planar to homeotropic transitions at the
nematic surface [25].

The equilibrium configuration in the bulk medium is
given as usual by the Euler-Lagrange equation which yields

Kθ′′(z)−
εa

8π
E2(z) sin[2θ(z)]−

e

2
E′(z) sin[2θ(z)] = 0,

(7)

which has to be solved with the boundary conditions

−Kθ′ +
1

2
(eE0 + w) sin(2θ0) + PsE0 sin θ0 = 0, at z = 0,

(8)

and lim
z→∞

θ′(z) = 0. (9)

Note that in the bulk the flexoelectric term couples only
with the field gradient as the purely field dependent part is
integrated to give only a surface term. Near the threshold
we can linearize equations (7, 8) to get

Kθ′′(z)−
[ εa

4π
E2(z) + eE′(z)

]
θ = 0, (10)

for the Euler-Lagrange equation, and

−Kθ′ + (eE0 + w + PsE0)θ0 = 0, (11)

for the boundary condition at z = 0.
We recall that the electric field E(z) is generated in

the present problem because of the adsorbed ions on the
surfaces and the counterion cloud forming the diffuse dou-
ble layer in the liquid crystal. The field distribution in this
case is well known and it can be written to a very good
approximation as [16]

E(z) = E0 exp(−z/Ld). (12)

The total energy for unit surface area is given by

F =

∫ ∞
0

fdz + fs

=

∫ ∞
0

[
1

2
Kθ

′2(z) +
εa

8π
E2(z)θ2(z)− eE(z)θ(z)θ′(z)

]
dz

+
1

2
(w +E0Ps)θ

2
0, (13)

retaining only terms up to second order in θ.
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3 Analysis

The field which acts as the source term for the instability
(see Eq. (10)) is localized close to the limiting surface at
z = 0. Thus it is appropriate to consider an approximate
solution of the form

θ(z) = θ0 + ∆θ[1− exp(−z/Ld)] = θb −∆θ exp(−z/Ld),
(14)

where θb is the value of θ in the bulk (i.e. at z � Ld).
The bulk energy density now takes the simple form

f =
1

Ld

[
Ae−2z/Ld +Be−3z/Ld + Ce−4z/Ld

]
, (15)

where

A =
K(∆θ)2

2Ld
+
εa

8π
E2

0Ldθ
2
b − eE0θb∆θ, (16)

B = −
εa

4π
E2

0Ldθb∆θ + eE0(∆θ)2, (17)

and C =
εa

8π
E2

0Ld(∆θ)2. (18)

The total energy per unit surface area in the harmonic
approximation given by equation (13) is found to be

F = α(∆θ)2 − βθb∆θ + γθ2
b, (19)

where

α =
K

4Ld
+
eE0

3
+

εa

32π
E2

0Ld +
w +E0Ps

2
, (20)

β =
eE0

2
+

εa

24π
E2

0Ld + w + PsE0, (21)

and γ =
εa

16π
E2

0Ld +
w + PsE0

2
· (22)

As usual the equilibrium conditions are

∂F

∂(∆θ)
= 2α∆θ − βθb = 0, (23)

and
∂F

∂θb
= −β∆θ + 2γθb = 0. (24)

The undistorted state is stable if

R =
∂2F

∂(∆θ)2
= 2α > 0, (25)

and the Hessian determinant

H =
∂2F

∂(∆θ)2

∂2F

∂θ2
b

−

(
∂2F

∂(∆θ)∂θb

)
= 4αγ − β2 > 0.

(26)

By taking into account equations (20, 21, 22), relations
(25, 26) can be rewritten as

εa

16π
E2

0Ld +

(
2e

3
−Ps

)
E0 +

(
K

2Ld
+ w

)
> 0, (27)

and

(
K

4Ld
+
eE0

3
+

εa

32π
E2

0Ld

)
εa

4π
E2

0Ld

+

(
K

2Ld
−
eE0

3
+

εa

48π
E2

0Ld

)
(w + PsE0)

−

(
eE0

2
+

εa

12π
E2

0Ld

)2

> 0. (28)

Before discussing the general case of arbitrary values of
the anchoring energy w, it is instructive to consider the
specific case of strong anchoring, i.e. w → ∞. It may be
noted that this case has not been discussed in the earlier
treatments of the problem [11–15], as only the inequality
(27) was treated in those papers. As mentioned in the
Introduction, this approach is equivalent to reducing the
dielectric and flexoelectric contributions to surface terms.

4 Instability thresholds for strong anchoring

When w →∞, the inequality (27) is always satisfied and it
is sufficient to discuss different possibilities using relation
(28). It is clear that the instability thresholds correspond
to the zero crossings of the coefficient of the (w + PsE0)
term which dominates in the strong anchoring limit. We
denote this coefficient by µ. The extremum of this coef-
ficient with respect to E0, (dµ/dE0 = 0), corresponds to
E0 = (8πe)/(εaLd), which is a minimum for εa > 0 and a
maximum for εa < 0. The extremum value of µ is given
by

µe =
K

2Ld
−

4π

3

e2

εaLd
(29)

and the fields corresponding to zero crossings of µ are
given by [26]

E0 =
8πe

εaLd
±

√(
8πe

εaLd

)2

−
24πK

εaL2
d

. (30)

We can now discuss different possibilities.

4.1 Nematic with negative dielectric anisotropy, εa < 0

In this case the term in the square root of equation (30)
is always positive and larger in magnitude than the first
term. Hence in general there are two values of the surface
field, one negative and another positive, corresponding to
different species of adsorbed charges, between which the
homeotropic anchoring is stable, and beyond which it gets
destabilized. If the flexoelectric coefficient e is positive, the
negative threshold field is much larger than the positive



330 The European Physical Journal B

field, and vice versa for a negative e. The physical meaning
of these results is obvious: while a negative εa leads to an
instability of the director if the electric field is large enough
and has either sign, the flexoelectric term stabilizes the
homeotropic alignment for one of the signs of the field
gradient depending on its own sign.

4.2 Nematic with positive dielectric anisotropy, εa > 0

In this case two possibilities have to be considered accord-
ing to the value of εa.

If εa <
8π

3

e2

K
(31)

the term in the square root is still positive, but smaller in
magnitude than the first term in equation (30). The insta-
bility occurs for some value of the field, but the homeotro-
pic alignment gets restabilized at a second higher thresh-
old field in view of the quadratic dependence of the stabi-
lizing dielectric torque on the field. The sign of e decides
the sign of the field for which the destabilization occurs:
for positive e, E0 also should be positive, i.e. the field
gradient should be negative, and vice versa.

If εa >
8π

3

e2

K
(32)

the term under the square root becomes negative and
there cannot be any destabilization of the homeotropic
alignment.

The case when εa = 0 will be discussed separately.

5 Threshold values for finite anchoring energy

When the anchoring energy is finite, the zero crossings
in relations (27, 28) have to be numerically evaluated for
given material parameters and the value of w. This has
been done, and as can be expected, as w gets smaller, the
threshold field needed for instability becomes lower. For
example, if w = 10−2 erg/cm

2
, which corresponds to an

extrapolation length of∼ 0.5 µm, which can be attained in
the laboratory [8], and εa = −1, Ps = −10−3 esu [23,24],
Ld = 0.1 µm [17,18], K = 10−7 dyn [27], the threshold
double layer potential is about 22 mV for e = +5× 10−4

esu and ∼ 30 mV for e = −5×10−4 esu [28]. These values
are easily attained in conducting nematic liquid crystals
[17,18]. We consider now two simple limiting cases.

5.1 Threshold for a dielectrically isotropic medium

For simplicity we assume that Ps = 0 in further analysis.
In this case, when εa = 0, the stability conditions equa-
tions (27, 28) read as

2e

3
E0 +

(
K

2Ld
+ w

)
> 0, (33)

and

(
K

2Ld
−
eE0

3

)
w −

(
eE0

2

)2

> 0. (34)

Equation (33) leads to a threshold condition only if e < 0,
and in this case it is given by

E1 =
3

2|e|

(
K

2Ld
+ w

)
. (35)

Equation (34) yields

E2 = −
2w

3e
−

√(
2w

3e

)2

+
2Kw

Lde2
, (36)

and E3 = −
2w

3e
+

√(
2w

3e

)2

+
2Kw

Lde2
· (37)

In the strong anchoring case w → ∞, both E1 and E2

tend to infinity. In this case we get a destabilization of the
director field at the threshold given by

lim
w→∞

E3 =
3K

eLd
. (38)

E3 is of course positive for positive e. This means that the
threshold occurs for a double layer potential [27,28]

Vth ∼
K

|e|
∼

5× 10−7

5× 10−4
∼ 10−3 stat V ∼ 0.3 V. (39)

Indeed such voltages are possible across double layers [29].

5.2 Threshold for a non flexoelectric medium

In this case e = 0 and as before we assume Ps = 0. Now
the instability threshold, which can occur only if εa < 0,
is given by

|εa|

16π
E2

0Ld −

(
K

2Ld
+ w

)
< 0, (40)

and

−
ε2a

1152π2
L2

dE
4
0 +
|εa|

4π

(
K

4
+
Ldw

12

)
E2

0 −
Kw

2Ld
< 0. (41)

As before in the strong anchoring limit the threshold
condition becomes

Eth =
1

Ld

√
24πK

|εa|
, (42)

whose form is reminiscent of the condition for Freedericksz
transition. Again we get a double layer threshold voltage
for εa = −4 to be Vth ∼ 1 V; of the same order as in the
previous case.

The above analysis shows that even when the anchor-
ing energy w is considered to be infinite, a sufficiently



G. Barbero et al.: Surface field and anchoring energy 331

strong surface electric field generated by adsorbed ions can
lead to a destabilization of the homeotropic alignment. If
the dielectric anisotropy is negative and the flexoelectric
coefficient e is positive, and the anchoring energy is mod-
erate, the destabilizing double layer voltage can be quite
low, of the order of 0.1 V, which can be easily attained in
practical cases.

Similar considerations are valid for planar alignment.
In this case it is easier to destabilize nematic liquid crystals
with positive εa and for a positive surface field, materials
with negative e.

6 Conclusions

We have reexamined the influence of adsorbed ions on the
orientation of nematic liquid crystals doped with ionic im-
purities. The earlier approaches treated the problem only
for the case of a weak surface anchoring, and treated the
effect of the double layer potential as a purely surface ef-
fect, ignoring the elastic distortion in the bulk. In this
approximation, the surface electric field just renormalizes
the finite anchoring energy at the surface and hence it
does not influence the director profile if the anchoring is
strong. We have removed this limitation in our analysis
and shown that the surface electric field can affect the bulk
orientation of the director by distorting the director pro-
file near the surface. Indeed such a distortion is found even
when w → ∞. This destabilization has two origins, due
to both the dielectric anisotropy coupling with E2

0 , and
to the flexoelectric coefficient e = e1 + e3 coupling with
the strong field gradient near the surface. For homeotropic
anchoring, a positive sign of e leads to a destabilization
of the director for a negative field gradient and hence a
positive surface field, and is the origin of destabilization in
materials with positive εa. In this case at a second larger
threshold the director profile gets restabilized in view of
the E2-dependence of the dielectric coupling. In the case
of negative dielectric anisotropy materials, such a restabi-
lization is not possible. In fact it is often found that it is
rather difficult to get a homeotropic alignment of materi-
als with negative dielectric anisotropy [29]. We feel that
the phenomena discussed in this paper can account for
these experimental results.
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